Creating bilingual lexica using reference wordlists for alignment of monolingual semantic vector spaces

نویسندگان

  • Jon Holmlund
  • Magnus Sahlgren
  • Jussi Karlgren
چکیده

This paper proposes a novel method for automatically acquiring multilingual lexica from non-parallel data and reports some initial experiments to prove the viability of the approach. Using established techniques for building mono-lingual vector spaces two independent semantic vector spaces are built from textual data. These vector spaces are related to each other using a small reference word list of manually chosen reference points taken from available bi-lingual dictionaries. Other words can then be related to these reference points first in the one language and then in the other. In the present experiments, we apply the proposed method to comparable but non-parallel English-German data. The resulting bi-lingual lexicon is evaluated using an online EnglishGerman lexicon as gold standard. The results clearly demonstrate the viability of the proposed methodology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Word Mapping Using Structural Similarities in Monolingual Embeddings

Most existing methods for automatic bilingual dictionary induction rely on prior alignments between the source and target languages, such as parallel corpora or seed dictionaries. For many language pairs, such supervised alignments are not readily available. We propose an unsupervised approach for learning a bilingual dictionary for a pair of languages given their independently-learned monoling...

متن کامل

Towards producing bilingual lexica from monolingual corpora

Bilingual lexica are the basis for many cross-lingual natural language processing tasks. Recent works have shown success in learning bilingual dictionary by taking advantages of comparable corpora and a diverse set of signals derived from monolingual corpora. In the present work, we describe an approach to automatically learn bilingual lexica by training a supervised classifier using word embed...

متن کامل

Using word2vec for Bilateral Translation

Word and phrase tables are key inputs to machine translations, but costly to produce. New unsupervised learning methods represent words and phrases in a high-dimensional vector space, and these monolingual embeddings have been shown to encode syntactic and semantic relationships between language elements. The information captured by these embeddings can be exploited for bilingual translation by...

متن کامل

Improving word alignment for low resource languages using English monolingual SRL

We introduce a new statistical machine translation approach specifically geared to learning translation from low resource languages, that exploits monolingual English semantic parsing to bias inversion transduction grammar (ITG) induction. We show that in contrast to conventional statistical machine translation (SMT) training methods, which rely heavily on phrase memorization, our approach focu...

متن کامل

Identifying Complex Sound Correspondences in Bilingual Wordlists

The determination of recurrent sound correspondences between languages is crucial for the identification of cognates, which are often employed in statistical machine translation for sentence and word alignment. In this paper, an algorithm designed for extracting non-compositional compounds from bitexts is shown to be capable of determining complex sound correspondences in bilingual wordlists. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005